Problem 1.48

Find expressions for the unit vectors $\hat{\boldsymbol{\rho}}, \hat{\boldsymbol{\phi}}$, and $\hat{\mathbf{z}}$ of cylindrical polar coordinates (Problem 1.47) in terms of the Cartesian $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$. Differentiate these expressions with respect to time to find $d \hat{\boldsymbol{\rho}} / d t, d \hat{\boldsymbol{\phi}} / d t$, and $d \hat{\mathbf{z}} / d t$.

Solution

The unit vectors in cylindrical coordinates (ρ, ϕ, z) are illustrated below.

$\hat{\boldsymbol{\rho}}$ points radially outward from the z-axis; $\hat{\boldsymbol{\phi}}$ is perpendicular to both $\hat{\boldsymbol{\rho}}$ and $\hat{\mathbf{z}}$, pointing in the direction of increasing ϕ; and $\hat{\mathbf{z}}$ points in the direction of the z-axis.

$$
\begin{aligned}
\hat{\boldsymbol{\rho}} & =\frac{\rho}{|\boldsymbol{\rho}|} \\
& =\frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+0 \hat{\mathbf{z}}}{\sqrt{x^{2}+y^{2}+0^{2}}} \\
& =\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{x}}+\frac{y}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\frac{x}{\rho} \hat{\mathbf{x}}+\frac{y}{\rho} \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
\hat{\phi} & =\hat{\mathbf{z}} \times \hat{\boldsymbol{\rho}} \\
& =\hat{\mathbf{z}} \times(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\cos \phi(\hat{\mathbf{z}} \times \hat{\mathbf{x}})+\sin \phi(\hat{\mathbf{z}} \times \hat{\mathbf{y}})+0(\hat{\mathbf{z}} \times \hat{\mathbf{z}}) \\
& =\cos \phi(\hat{\mathbf{y}})+\sin \phi(-\hat{\mathbf{x}})+0(\mathbf{0}) \\
& =-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
\hat{\mathbf{z}} & =\hat{\mathbf{z}}
\end{aligned}
$$

Take the first derivative of each cylindrical unit vector with respect to t, noting that the derivative of each Cartesian unit vector with respect to time is zero.

$$
\begin{aligned}
& \frac{d \hat{\boldsymbol{\rho}}}{d t}=\frac{d}{d t}(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\frac{d}{d t}(\cos \phi \hat{\mathbf{x}})+\frac{d}{d t}(\sin \phi \hat{\mathbf{y}}) \\
& =\frac{d}{d t}(\cos \phi) \hat{\mathbf{x}}+\cos \phi \frac{d \hat{\mathbf{x}}}{d t}+\frac{d}{d t}(\sin \phi) \hat{\mathbf{y}}+\sin \phi \frac{d \hat{\mathbf{y}}}{d t} \\
& =\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}+\cos \phi \underbrace{\frac{d \hat{\mathbf{x}}}{d t}}_{=\mathbf{0}}+\left(\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}}+\sin \phi \underbrace{\frac{d \hat{\mathbf{y}}}{d t}}_{=\mathbf{0}} \\
& =\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}+\left(\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}} \\
& =\frac{d \phi}{d t}(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}) \\
& =\frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \\
& \frac{d \hat{\boldsymbol{\phi}}}{d t}=\frac{d}{d t}(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\frac{d}{d t}(-\sin \phi \hat{\mathbf{x}})+\frac{d}{d t}(\cos \phi \hat{\mathbf{y}}) \\
& =\frac{d}{d t}(-\sin \phi) \hat{\mathbf{x}}-\sin \phi \frac{d \hat{\mathbf{x}}}{d t}+\frac{d}{d t}(\cos \phi) \hat{\mathbf{y}}+\cos \phi \frac{d \hat{\mathbf{y}}}{d t} \\
& =\left(-\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}-\sin \phi \underbrace{\frac{d \hat{\mathbf{x}}}{d t}}_{=\mathbf{0}}+\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}}+\cos \phi \underbrace{\frac{d \hat{\mathbf{y}}}{d t}}_{=\mathbf{0}} \\
& =\left(-\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}+\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}} \\
& =-\frac{d \phi}{d t}(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}) \\
& =-\frac{d \phi}{d t} \hat{\rho} \\
& \frac{d \hat{\mathbf{z}}}{d t}=\mathbf{0}
\end{aligned}
$$

Therefore,

$$
\frac{d \hat{\boldsymbol{\rho}}}{d t}=\frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \quad \text { and } \quad \frac{d \hat{\boldsymbol{\phi}}}{d t}=-\frac{d \phi}{d t} \hat{\boldsymbol{\rho}} \quad \text { and } \quad \frac{d \hat{\mathbf{z}}}{d t}=\mathbf{0} .
$$

